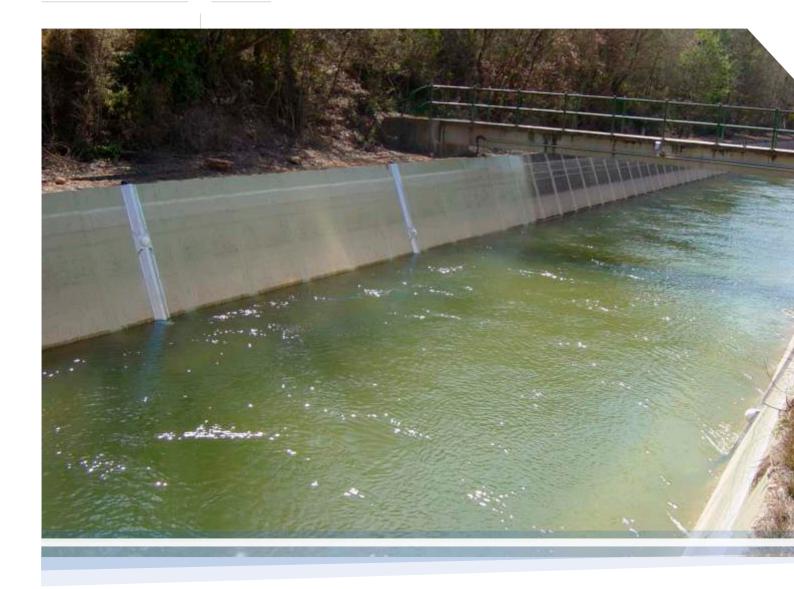
По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Ореп (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16

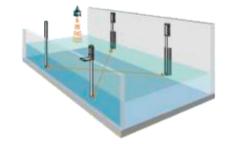
Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Череповец (8202)49-02-61 Череповец (8202)49-02-64 Яроспавль (4852)69-52-93

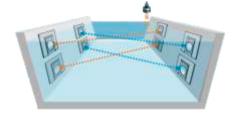
Единый адрес: nsv@nt-rt.ru | http://nivus.nt-rt.ru



NIVUS - innovation and high accuracy

The NivuFlow 650 is compliant with both ISO 6416 & IEC 60041 and has been developed for accurate flow measurement in open channels, part full and full pipes, and surface water bodies. To meet the highest possible accuracy requirements it is currently possible to utilise the NivuFlow 650 using up to 4 velocity paths, with up to 32 velocity paths available by the end of 2016. The NivuFlow 650 operates over the full bidirectional flow range without causing obstruction or head loss where the large array of NIVUS transducer models makes flow measurement possible across the widest possible range of applications


Typical NivuFlow open channel measurement application



Flow measurement systems at the highest technical level

The compact transmitter design is easily integrated into instrument cabinets using a DIN rail mounting system and is also available with a field enclosure that provides full protection under harsh environmental operating conditions.

The transmitter's large graphic display allows quick and easy commissioning of the flow metering system. The NivuFlow 650 provides extensive diagnostic options and allows in-depth analysis of operational function on site. The system has been developed using future proof protocols complete with versatile choices for communication and I/O connections that open up a wide range of options for operators to integrate the instruments into SCADA or similar operating systems.

Your benefits

- Ultrasonic transit time measurement
- Single or multi path measurement (up to 32 measurement paths with extension modules - in preparation)
- Quick and easy initial start-up due to intuitive, modern operating concept
- The wide range of NIVUS transducers ensures suitability for each measurement application
- Online connection/data transmission and remote maintenance via Internet
 - Uncomplicated integration into existing control systems via universal interfaces
- Weatherproof version for outdoor use available
- Compliant with ISO 6416 & IEC 60041

Typical Applications

Measurement in surface water such as rivers, channels, irrigation systems, drainage systems as well as cooling water, process water, hydropower plants, penstock monitoring, turbine efficiency monitoring and many more.

Nivu Flow 650 transmitter

The intuitive single handed operation and the bright colour display allow quick, easy and cost-efficient commissioning on site. Additional communication devices or software are not required.

Factors influencing the measurement results such as channel shape, varying water levels, skew flow and discharge behaviour are taken into account during flow calculation. The NivuFlow 650 flow calculations are based on the very latest fluidal dynamic models with enhanced diagnostic options to provide detailed analysis of the flow meter operation both on site and via a remote link from anywhere in the World. In addition to the DIN rail mounting system the NivuFlow 650 can be provided with a weatherproof field enclosure for outdoor installation.

Back Screen display

3D-preview

Name of massa	rement plans	
Path setup	Chevital VV	
Path number	(4) 1	1
Channel profile		
Rectangle:		\$
1000		-
1	a m (2.000	m
T ST		m

Screen display measure place

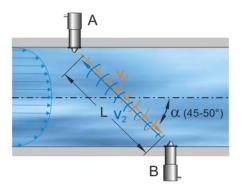
Installation suggestion

On site from anywhere

- Integrated data logger for high data security
- Saved data can be recalled at any time
- Online programming and operation (remote access and control)
- Quick and comprehensive remote diagnostics of entire measurement applications

How the NivuFlow 650 measures

Transit time indirectly calculates flow by measuring velocity and the cross sectional area related to the water level.


The general measurement equation is:

$$\mathbf{Q} = \mathbf{A} \cdot \mathbf{v}_{A}$$

A = cross-sectional area

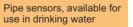
$$\mathbf{v}_{A}$$
 = average flow velocity in

cross-sectional area

The NivuFlow 650 measurement principle is based on detecting the transit time of ultrasonic signals between two sensors (A and B). The transit time in flow direction t_1 is faster than it is against the flow direction t_2 . The time difference between both transit times is proportional to the average velocity along the measurement path v_m . The measurement system calculates the average cross sectional area velocity v_A , the average path velocity v_m and the results are indicated directly on the transmitter display.

$$v_m = \frac{c^2}{2 \cdot L \cdot \cos \alpha} \cdot \left(\frac{1}{t_1} - \frac{1}{t_2}\right)$$

c = velocity of sound t_1 = time from A to B, t_2 = time from B to A



Measurements in pipes

For full pipe measurement applications with a fully developed velocity profile it is normally sufficient to use a single velocity path measurement (1E1P). However, normally there are distorted flow profiles which have negative effects on the measurement accuracy. Such influences can be compensated by using the NivuFlow 650 in combination with up to 32 measurement paths.

new

The NivuFlow 650 utilises various transducer models depending on the application. For measurement in part full and full pipes special screw-in sensors ensure simple a installation solution.

Measurement in open channels

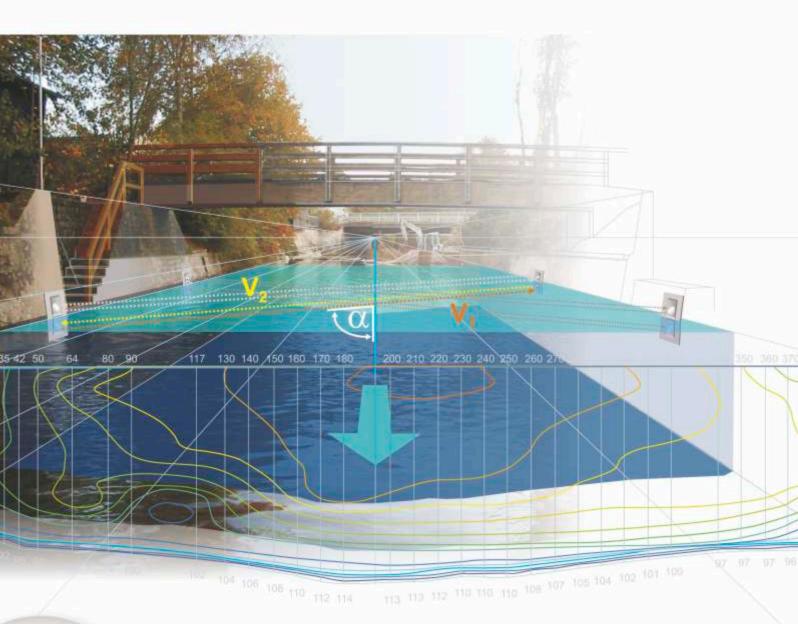
Transit time is a well understood and established method for flow measurement in demanding applications without requirement for the construction of a measurement structure such as weir or flume.

The NivuFlow 650 has been specifically developed to overcome the inherent problems associated with complex channel shapes, varying water levels and skew flow through our highly flexible velocity path configuration options.

Example application using 2 velocity paths (4 transducers) installed underneath a road bridge using rod style sensors.

Rod sensors

To meet the highest possible accuracy requirements for both open channel and pipe measurement applications it is currently possible to utilise the NivuFlow 650 using up to 4 velocity paths, with up to 32 velocity paths available by the end of 2016.



Sensors

NIVUS have developed a range of highly accurate acoustic transducers, with both standard and bespoke mounting systems available to ensure the best and most flexible installation options are available for any measurement application

NIVUS - setting exemplary standards

With a significant and wide ranging installed base of transit time systems, and utilising the decades of experience amassed by our engineers, technicians and expert staff, NIVUS provide a full range of services starting with initial site assessment, through to design, commissioning, installation and maintenance.

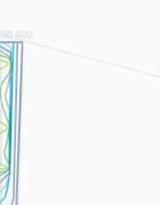
Ballhead sensor

new

Hemisphere sensor

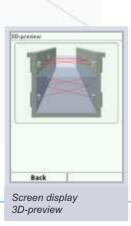
Wedge sensor

new



Flow measurement using the hemisphere sensors

Taking into account the measurement location, variable water levels and channel profile, the hemisphere sensors were configured within the rectangular channel to provide accurate flow measurement over the full range of flow rates.

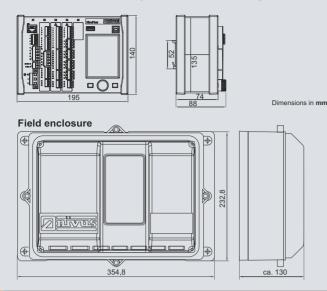


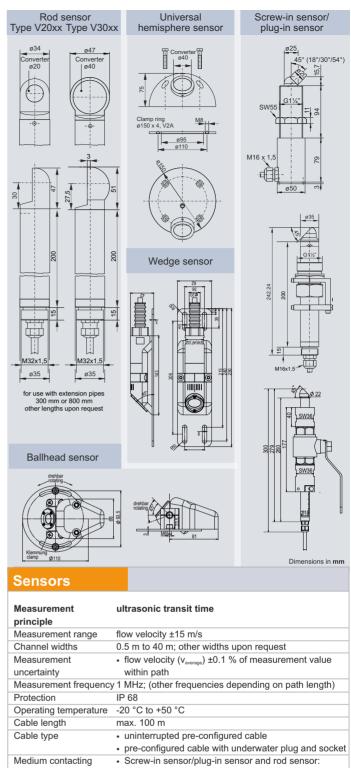
Installation of hemisphere sensors in a part filled channel.

For all of your individual and bespoke measurement solutions please contact NIVUS

Talk to us.


There are 8 hemisphere sensors installed in a crossed path configuration utilising 4 velocity paths, with the upper velocity paths deployed when the water levels exceed the set transducer heights.


The transducers are installed using bespoke stainless steel mounting plates set into pre-formed slots cut in the concrete channel walls.


Transmitter

Transmitter

Power supply	100 - 240 V AC, -15 % / +10 %, 47 to 63 Hz or 10 - 35 V DC
Power consumption	1 relay energised, 230 V AC: (rounded) 14 W
	up to 8 sensors transit time 1 MHz
Enclosure	aluminium, plastic
Weight	approx. 1150 g
Protection	IP 20 (control cabinet), IP 68 (field enclosure)
Operating temperature	DC: -20°C to +70°C
	AC: -20°C to +65°C
Storage temperature	-30°C to +80°C
Max. humidity	80%, non-condensing
Display	240 x 320 pixel, 65536 colours
Operation	rotary pushbutton, 2 function keys,
	menus in English, German, French, Swedish
Connection	plug with cage clamp terminals
Inputs	2x (Type T2) 4-20 mA, with 12 Bit resolution for
	storage of data from external units, load 91 Ohm,
	2 x (Type T2) digital input
Outputs	2 x (Type T2) 0/4-20 mA, load 500 Ohm,
	12 Bit resolution
	1x (Type T2) bistable relay SPDT,
	load up to 230 V AC/2 A (cos ϕ 0.9),
	minimum switching current 100 mA
	1x (Type T2) relay SPDT, load up to 230 V
	AC/2 A (cos ϕ 0.9), min. switching current 100 mA
Data memory	1.0 GB internal memory,
	readout on faceplate via USB stick
Communication	 Modbus TCP via network (LAN/WAN, Internet)
	 Modbus RTU via RS485 or RS232
	Ethernet TCP/IP
Measurement	• flow (Q): ± 0.5 % depending on measurement
uncertainty	and margin conditions
	 offset velocity < ± 5mm/s
Number of paths	1 up to 4 measurement paths, up to 32
	measurement paths with extention modules

materials stainless steel 1.4571, CFK (Carbon), Viton®

• Hemisphere: stainless steel 1.4571, CFK (Carbon), POM, PUR, (plug and socket made of Neoprene) · Ballhead: stainless steel. 1.4571, POM

The specifications above are extracts from the complete documentation. You can find the complete specifications on our data sheets

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89

Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16

Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Единый адрес: nsv@nt-rt.ru | http://nivus.nt-rt.ru